Replica-exchange molecular dynamics simulations of cellulose solvated in water and in the ionic liquid 1-butyl-3-methylimidazolium chloride.

نویسندگان

  • Barmak Mostofian
  • Xiaolin Cheng
  • Jeremy C Smith
چکیده

Ionic liquids have become a popular solvent for cellulose pretreatment in biorefineries due to their efficiency in dissolution and their reusability. Understanding the interactions between cations, anions, and cellulose is key to the development of better solvents and the improvement of pretreatment conditions. While previous studies described the interactions between ionic liquids and cellulose fibers, shedding light on the initial stages of the cellulose dissolution process, we study the end state of that process by exploring the structure and dynamics of a single cellulose decamer solvated in 1-butyl-3-methyl-imidazolium chloride (BmimCl) and in water using replica-exchange molecular dynamics. In both solvents, global structural features of the cellulose chain are similar. However, analyses of local structural properties show that cellulose explores greater conformational variability in the ionic liquid than in water. For instance, in BmimCl the cellulose intramolecular hydrogen bond O3H'···O5 is disrupted more often resulting in greater flexibility of the solute. Our results indicate that the cellulose chain is more dynamic in BmimCl than in water, which may play a role in the favorable dissolution of cellulose in the ionic liquid. Calculation of the configurational entropy of the cellulose decamer confirms its higher conformational flexibility in BmimCl than in water at elevated temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamics of cellulose solvation in water and the ionic liquid 1-butyl-3-methylimidazolim chloride.

Cellulose is present in biomass as crystalline microfibrils held together by a complex network of intermolecular interactions making it difficult to initiate its hydrolysis and conversion to fuels. While cellulose is insoluble in water and most organic solvents, complete dissolution of cellulose can be achieved in certain classes of ionic liquids (ILs). The present study was undertaken to analy...

متن کامل

Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses

UNLABELLED BACKGROUND In the present study, three ionic liquids, namely 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc), and 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM]DEP), were used to partially dissolve rice husk, after which the cellulose were regenerated by the addition of water. The aim of the investigation is to examine the im...

متن کامل

Cellulose/gold nanocrystal hybrids via an ionic liquid/aqueous precipitation route.

Injection of a mixture of HAuCl(4) and cellulose dissolved in the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride [Bmim]Cl into aqueous NaBH4 leads to colloidal gold nanoparticle/cellulose hybrid precipitates. This process is a model example for a very simple and generic approach towards (noble) metal/cellulose hybrids, which could find applications in sensing, sterile filtration, or as ...

متن کامل

Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems.

13C and 35/37Cl NMR relaxation measurements on several model systems demonstrate that the solvation of cellulose by the ionic liquid (IL) 1-n-butyl-3-methylimidazolium chloride ([C4mim]Cl) involves hydrogen-bonding between the carbohydrate hydroxyl protons and the IL chloride ions in a 1 ratio 1 stoichiometry.

متن کامل

Biphasic liquid mixtures of ionic liquids and polyethylene glycols.

We have found that 1-alkyl-3-methylimidazolium chloride ionic liquids (ILs) can form immiscible liquid mixtures with some polyethylene glycols (PEGs). Binary mixtures of 1-ethyl-3-methylimidazolium chloride with PEG of molecular weight 1500, 2000, or 3400 g mol(-1), or of 1-butyl-3-methylimidazolium chloride with PEG of molecular weight 2000 or 3400 g mol(-1), have been found to give rise to en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 118 38  شماره 

صفحات  -

تاریخ انتشار 2014